
LazyBase: Trading Freshness for

Performance in a Scalable Database

James Cipar, Greg Ganger

Carnegie Mellon University

Kimberly Keeton, Charles B. Morrey III
Craig A. N. Soules, Alistair Veitch

HP Labs, Palo Alto

Abstract

The LazyBase scalable database system is specialized for

the growing class of data analysis applications that extract

knowledge from large, rapidly changing data sets. It pro-

vides the scalability of popular NoSQL systems without the

query-time complexity associated with their eventual consis-

tency models, offering a clear consistency model and explicit

per-query control over the trade-off between latency and re-

sult freshness. With an architecture designed around batch-

ing and pipelining of updates, LazyBase simultaneously in-

gests atomic batches of updates at a very high throughput

and offers quick read queries to a stale-but-consistent ver-

sion of the data. Although slightly stale results are sufficient

for many analysis queries, fully up-to-date results can be ob-

tained when necessary by also scanning updates still in the

pipeline. Compared to the Cassandra NoSQL system, Lazy-

Base provides 4X–5X faster update throughput and 4X faster

read query throughput for range queries while remaining

competitive for point queries. We demonstrate LazyBase’s

tradeoff between query latency and result freshness as well

as the benefits of its consistency model. We also demon-

strate specific cases where Cassandra’s consistency model

is weaker than LazyBase’s.

Categories and Subject Descriptors H.2.4 Database

Management Systems, Parallel Databases, Distributed Databases

General Terms Design, Experimentation, Measurement,

Performance

Keywords Consistency, Freshness, Pipeline

1. Introduction

Data analytics activities have become major components

of enterprise computing. Increasingly, time-critical business

decisions are driven by analyses of large data sets that grow

and change at high rates, such as purchase transactions, news

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

updates, click streams, hardware monitoring events, tweets

and other social media, and so on. They rely on accurate

and nearly up-to-date results from sequences of read queries

against these data sets, which also need to simultaneously

accommodate the high rate of updates.

Unfortunately, current systems fall far short on one or

more dimensions. The traditional approach to decision sup-

port couples an OLTP system, used for maintaining the pri-

mary copy of a database on which update transactions are

performed, with a distinct data warehouse system. The lat-

ter stores a copy of the data in a format that allows effi-

cient read-only queries, re-populated infrequently (typically

daily) from the primary database by a process known as ex-

tract, transform, and load (ETL) [19]. For decision support

activities that can rely on stale versions of OLTP data, this

model is ideal. However, for many modern data analytics

activities, which depend upon very high update rates and a

greater degree of freshness (i.e., up-to-date-ness), it is not.

So-called “NoSQL” database systems, such as Cassan-

dra [1], HBase [2], CouchDB [3] and MongoDB [4], have

emerged as an alternate solution. Generally speaking, these

systems support arbitrarily high ingest and query rates, scal-

ing effectively by relaxing consistency requirements to elim-

inate most of the locking and transactional overheads that

limit traditional OLTP systems. Most NoSQL systems adopt

an eventual consistency model, which simplifies the design

of the system but complicates its use for correctness-critical

data analytics. Programmers of analytics applications often

struggle with reasoning about consistency when using such

systems, particularly when results depend on data from re-

cent updates. For example, when a client updates a value

in the Cassandra database, not all servers receive the new

value immediately. Subsequent reads may return either the

old value or the new one, depending on which server an-

swers them. Confusingly, a client may see the new value for

one read operation, but the old value for a subsequent read if

it is serviced by a different server.

LazyBase provides a new point in the solution space,

offering a unique blend of properties that matches mod-

ern data analytics well. Specifically, it provides scalable

high-throughput ingest together with a clear, strong consis-

tency model that allows for a per-read-query tradeoff be-

tween latency and result freshness. Exploiting the insight

that many queries can be satisfied with slightly out-of-date

data, LazyBase batches together seconds’ worth of incom-

ing data into sizable atomic transactional units to achieve

high throughput updates with strong semantics. LazyBase’s

batching approach is akin to that of incremental ETL sys-

tems, but avoids their freshness delays by using a pipelined

architecture that allows different stages of the pipeline to

be queried independently. Queries that can use slightly out-

of-date data (e.g., a few minutes old) use only the final

output of the pipeline, which corresponds to the fully in-

gested and indexed data. In this case, updates are effectively

processed in the background and do not interfere with the

foreground query workload, thus resulting in query laten-

cies and throughputs achievable with read-only database sys-

tems. Queries that require even fresher results can access

data at any stage in the pipeline, at progressively higher pro-

cessing costs as the freshness increases. This approach pro-

vides applications with control over and understanding of

the freshness of query results.

LazyBase’s architecture also enhances its throughput and

scalability. Of course, batching is a well-known approach to

improving throughput. In addition, the stages of LazyBase’s

pipeline can be independently parallelized, permitting flex-

ible allocation of resources (including machines) to ingest

stages to accommodate workload variability and overload.

We evaluate LazyBase’s performance by comparing to

Cassandra both for update performance as well as point

and range query performance at various scalability levels.

Because of its pipelined architecture and batching of up-

dates, LazyBase maintains 4X–5X higher update throughput

than Cassandra at all scalability levels. LazyBase achieves

only 45–55% of Cassandra’s point query throughput, how-

ever, due to the relative efficiency of Cassandra’s single row

lookups. Conversely, because LazyBase stores data sorted

sequentially in the keyspace of the query being performed,

LazyBase achieves 4X the range query throughput of Cas-

sandra. LazyBase achieves this performance while maintain-

ing consistent point-in-time views of the data, whereas Cas-

sandra does not.

This paper makes several contributions. Most notably,

it describes a novel system (LazyBase) that can provide

the scalability of NoSQL database systems while provid-

ing strongly consistent query results. LazyBase also demon-

strates the ability to explicitly trade off freshness and read-

query latency, providing a range of options within which

costs are only paid when necessary. It shows how combin-

ing batching and pipelining allows for the three key features:

scalable ingest, strong consistency, and explicit control of

the freshness vs. latency tradeoff.

2. Background and motivation

This section discusses data analytics applications, features

desired of a database used to support them, and major short-

comings of the primary current solutions. Related work is

discussed in more detail in Section 6.

Data analytics applications. Insights and predictions

extracted from large, ever-growing data corpuses have be-

come a crucial aspect of modern computing. Enterprises and

service providers often use observational and transactional

data to drive various decision support applications, such as

sales or advertisement analytics. Generally speaking, the

data generation is continuous, requiring the decision support

database system to support high update rates. The system

must also simultaneously support queries that mine the data

to accurately produce the desired insights and predictions.

Often, though, query results on a slightly out-of-date ver-

sion of the data, as long as it is self-consistent, are fine.

Table 1 lists various example applications across a number

of domains and with varied freshness requirements.

As one example, major retailers now rely heavily on data

analytics to enhance sales and inventory efficiency, far be-

yond traditional nightly report generation [28]. For exam-

ple, in order to reduce shipping costs, many retailers are

shifting to just-in-time inventory delivery at their stores, re-

quiring hour-by-hour inventory information in order to man-

age transportation of goods [15]. In addition to transaction

records from physical point-of-sale systems, modern retail-

ers exploit data like clickstreams, searches, and purchases

from their websites to drive additional sales. For example,

when a customer accesses a store website, recent activity by

the same and other customers can be used to provide on-the-

spot discounts, suggestions, advertisements, and assistance.

Social networking is another domain where vast quanti-

ties of information are used to enhance user experiences and

create revenue opportunities. Most social networking sys-

tems rely on graphs of interconnected users that correspond

to publish-subscribe communication channels. For example,

in Twitter and Facebook, users follow the messages/posts of

other users and are notified when new ones are available

from the users they follow. Queries of various sorts allow

users to examine subsets of interest, such as the most recent

messages, the last N messages from a given user, or mes-

sages that mention a particular “hashtag” or user’s name. A

growing number of applications and services also rely on

broader analysis of both the graphs themselves and topic

popularity within and among the user communities they rep-

resent. In addition to targeted advertisements and sugges-

tions of additional social graph connections, social media in-

formation can rapidly expose hot-topic current events [10],

flu/cold epidemics [22], and even provide an early warning

system for earthquakes and other events [5].

Desired properties. Data analytics applications of the

types discussed above are demanding and different from

more traditional OLTP activities and report generation. Sup-

porting them well requires an interesting system design point

with respect to data ingest, consistency, and result freshness.

Application domain Desired freshness

seconds minutes hours+

Retail real-time coupons, targeted ads

and suggestions

just-in-time inventory manage-

ment

product search, trending, earnings

reports

Social networking message list updates,

friend/follower list changes

wall posts, photo sharing, news

updates and trending

social graph analytics

Transportation emergency response, air traffic

control

real-time traffic maps, bus/plane

arrival prediction

traffic engineering, bus route plan-

ning

Investment real-time micro-trades, stock tick-

ers

web-delivered graphs trend analyses, growth reports

Enterprise information management infected machine identification email, file-based policy violations enterprise search results, e-

discovery requests

Data center and network monitoring automated problem detection and

diagnosis

human-driven diagnosis, online

performance charting

capacity planning, availability anal-

yses, workload characterization

Table 1. Freshness requirements for application families from a variety of domains.

Data ingest: Such applications rely on large data cor-

puses that are updated rapidly, such as clickstreams, Twitter

tweets, location updates, or sales records. Any system used

to support such analytics must be able to ingest and organize

(e.g., index) the data fast enough to keep up with the data up-

dates. At the same time it sustains these high data ingestion

rates, the system must also be able to answer the read-only

queries it receives. Fortunately though, high-throughput in-

gest analytics data tends to be observational or declarative

data, such that the updates and the queries are independent.

That is, the updates add, replace or delete data but do not

require read-modify-write transactions on the data corpus.

So, a decision support system can handle updates separately

from read-only analytic queries. As discussed further below,

it is important that the system support atomic updates to a

set of related data items, so that consistent query results can

be obtained.

Consistency: To simplify the programming of decision

support applications, query results typically must have a

consistency model that analysts and application writers can

understand and reason about. Weak forms of consistency,

such as eventual consistency, where the storage system guar-

antees that if no new updates are made to the object, even-

tually all accesses will return the last updated value [42],

are difficult to reason about. As a result, application devel-

opers generally seek stronger properties [40, 42], such as a

consistent prefix, monotonic reads, “read my writes,” causal

consistency, or self-consistency. By requesting a consistent

prefix, a reader will observe an ordered sequence of writes

starting with the first write to a data object. With monotonic

read consistency, if a reader has seen a particular value for an

object, any subsequent accesses in that session will never re-

turn any previous values; as such, it is often called a “session

guarantee.” The read my writes property guarantees that the

effects of all writes performed by a client are visible to the

client’s subsequent reads. Causal consistency is a generaliza-

tion of read my writes, where any process with a causal rela-

tionship to a process that has updated an object will see the

updated value. Self-consistency refers to the property that

the data set has been updated in its entirety, in the face of

multi-row (or even multi-table) update transactions. With-

out such stronger consistency properties, application writers

struggle to produce accurate insights and predictions. For

example, for just-in-time inventory management, not hav-

ing a consistent view of the data can lead to over- or under-

estimating delivery needs, either wasting effort or missing

sales opportunities due to product unavailability. As another

example, a user notified of a new tweet could, upon trying

to retrieve it, be told that it does not exist. Even disaster re-

covery for such systems becomes more difficult without the

ability to access self-consistent states of the data; simple so-

lutions, such as regular backups, require consistent point-in-

time snapshots of the data.

Freshness: For clarity, we decouple the concepts of data

consistency (discussed above) and data freshness. Freshness

(also known as bounded staleness [40]) describes the de-

lay between when updates are ingested into the system, and

when they are available for query – the “eventual” of even-

tual consistency. Of course, completely-up-to-date freshness

would be ideal, but the scalability and performance costs of

such freshness has led almost all analytics applications to

accept less. For most modern analytics, bounded staleness

(e.g., within seconds or minutes) is good enough. We believe

that it would be best for freshness (or the lack thereof) to be

explicit and, even better, application-controlled. Application

programmers should be able to specify freshness goals in an

easy-to-reason-about manner that puts a bound on how out-

of-date results are (e.g., “all results as of 5 minutes ago”),

with a system supplying results that meet this bound but not

doing extra work to be more fresh. The system may provide

even fresher results, but only if it can do so without degrad-

ing performance. Such an approach matches well with the

differences in freshness needs among applications from the

various domains listed in Table 1.

In the next section, we describe LazyBase, which pro-

vides a new point in the solution space to satisfy the needs

of modern data analytics applications. In particular, it com-

bines scalable and high-throughput data ingest, a clear con-

sistency model, and explicit per-read-query control over the

tradeoff between latency and result freshness.

Figure 1. LazyBase pipeline.

3. Design and implementation

LazyBase is a distributed database that focuses on high-

throughput updates and high query rates using batching. Un-

like most batching systems, LazyBase can dynamically trade

data freshness for query latency at query time. It achieves

this goal using a pipelined architecture that provides access

to update batches at various points throughout their process-

ing. By explicitly accessing internal results from the pipeline

stages, applications can trade some query performance to

achieve the specific data freshness they require.

This section outlines LazyBase’s design and implemen-

tation, covering the application service model, how data is

organized in the system, its pipelined architecture, work

scheduling, scaling, fault tolerance, query model, and on-

disk data format.

3.1 Service model

LazyBase provides a batched update/read query service

model, which decouples update processing from read-only

queries. Unlike an OLTP database, LazyBase cannot simul-

taneously read and write data values in a single operation.

Queries can only read data, while updates (e.g., adds, modi-

fies, deletes) are observational, meaning that a new/updated

value must always be given; this value will overwrite (or

delete) existing data, and cannot be based on any data cur-

rently stored. For example, there is no way to specify that a

value should be incremented, or be assigned the results of

subtracting one current value from another, as might hap-

pen in a conventional database. This restriction is due to the

complexity of maintaining read my writes consistency in a

distributed batch-processing system. Methods for providing

this functionality are an area of future work, although we

have not found it to be a limitation in any of our applications

to date.

Clients upload a set of updates that are batched into a sin-

gle self-consistent update or SCU. An SCU is the granularity

of work performed at each pipeline stage, and LazyBase’s

ACID semantics are on the granularity of an SCU. The set

of changes contained within an SCU is applied atomically

to the tables stored in the database, using the mechanisms

described in Section 3.2. An SCU is applied consistently,

in that all underlying tables in the system must be consis-

tent after the updates are applied. SCUs are stored durably

on disk when they are first uploaded, and the application of

an SCU is isolated from other SCUs. In particular, Lazy-

Base provides snapshot isolation, where all reads made in

a query will see a consistent snapshot of the database; in

practice, this is the last SCU that was applied at the time

the query started. This design means that LazyBase provides

readers self-consistency, monotonic reads, and a consistent

prefix with bounded staleness.

Updates are specified as a set of Thrift [6] RPC calls,

to provide the data values for each row update. For effi-

ciency, queries are specified programmatically. Like MapRe-

duce [21], each query maps to a restricted dataflow pattern,

which includes five phases: filter, uniquify, group by, aggre-

gate, and post filter. These phases and their implementation

are described in more detail in Section 3.7.

3.2 Data model

Similar to conventional RDBMS/SQL systems, LazyBase

organizes data into tables with an arbitrary number of named

and typed columns. Each table is stored using a primary

view that contains all of the data columns and is sorted on

a primary key: an ordered subset of the columns in the table.

For example, a table might contain three columns 〈A, B, C〉
and its primary view key could be 〈A, B〉, meaning it’s sorted

first by A and then by B for equal values of A. The remaining

columns are referred to as the data columns. Tables may also

have any number of materialized secondary views which

contain a subset of the columns in the table and are sorted

on a different secondary key. The secondary key columns

must be a superset of the primary key columns to enforce

uniqueness, but can specify any column order for sorting.

LazyBase has no concept of non-materialized views.

Because these tables describe both authority data that

has been fully processed by the pipeline as well as update

data that is in-flight, they also contain additional hidden

fields. Each row is assigned a timestamp indicating the time

at which it should be applied as well as a delete marker

indicating if the specified primary key should be removed (as

opposed to inserted or modified). Each data column is also

assigned an additional timestamp indicating at what time

that column was last updated. These timestamps can vary

in the case of partial row updates.

Like many other databases, LazyBase supports the con-

cept of an auto-increment column (also known as a database

surrogate key), by which a given key (potentially multi-

column) can be assigned a single unique incrementing value

in the system, allowing users of the system to improve query

and join times and reducing storage requirements for large

keys. For instance, two strings specifying the hostname and

path of a file could be remapped to a single integer value,

which is then used in other tables to store observational data

about that file. We refer to these auto-increment columns as

ID-key columns.

3.3 Pipelined design

The design of the LazyBase pipeline is motivated by the goal

of ingesting and applying updates as efficiently as possible

while allowing queries to access these intermediate stages if

needed to achieve their freshness goals. Figure 1 illustrates

the pipeline stages of LazyBase: ingest, id-remapping, sort,

and merge. In addition to these stages, a coordinator is re-

sponsible for tracking and scheduling work in the system.

The ingest stage batches updates and makes them durable.

Updates are read from clients and written into the current

SCU as rows into an unsorted primary view for the appro-

priate table type. Rows are assigned timestamps based on

their ingestion time. ID-keys in the updates are assigned

temporary IDs, local to the SCU, and the mapping from key

to temporary ID is stored in the SCU (allowing queries to

use this mapping if needed). LazyBase marks an SCU as

complete once either sufficient time has passed (based on

a timeout) or sufficient data has been collected (based on a

watermark). At this point, new clients’ updates are directed

to the next SCU and any remaining previously connected

clients complete their updates to the original SCU. Once

complete, the ingest stage notifies the coordinator, which as-

signs it a globally unique SCU number and schedules the

SCU to be processed by the rest of the pipeline.

The id-remapping stage converts SCUs from using their

internal temporary IDs to using the global IDs common

across the system. Internally, the stage operates in two

phases, id-assignment and update-rewrite, that are also

pipelined and distributed. In id-assignment, LazyBase does a

bulk lookup on the keys in the SCU to identify existing keys

and then assigns new global IDs to any unknown keys, gen-

erating a temporary ID:global ID mapping for this update.

Because id-assignment does a lookup on a global key-space,

it can only be parallelized through the use of key-space par-

titioning, as discussed below. In update-rewrite, LazyBase

rewrites the SCU’s tables with the correct global IDs and

drops the temporary mappings.

The sort stage sorts each of the SCU’s tables for each

of its views based on the view’s key. Sorting operates by

reading the table data to be sorted into memory and then

looping through each view for that table, sorting the data by

the view’s key. The resulting sorted data sets form the sorted

SCU. If the available memory is smaller than the size of the

table, sorting will break a table into multiple memory-sized

chunks and sort each chunk into a separate output file to be

merged in the merge stage. While writing out the sorted data,

LazyBase also creates an index of the data that can be used

when querying.

The merge stage combines multiple sorted SCUs into

a single sorted SCU. By merging SCUs together, we re-

duce the query cost of retrieving fresher results by reducing

the number of SCUs that must be examined by the query.

LazyBase utilizes a tree-based merging based on the SCU’s

global number. SCUs are placed into a tree as leaf nodes and

once a sufficient span of SCUs is available (or sufficient time

has passed), they are merged together. This merging applies

the most recent updates to a given row based on its data col-

umn timestamps, resulting in a single row for each primary

key in the table. Eventually, all of the updates in the sys-

tem are merged together into a single SCU, referred to as the

authority. The authority is the minimal amount of data that

must be queried to retrieve a result from LazyBase. Just as in

the sort stage, LazyBase creates an index of the merged data

while it is being written that can be used when querying.

When each stage completes processing, it sends a mes-

sage to the coordinator. The coordinator tracks which nodes

in the system hold which SCUs and what stages of process-

ing they have completed, allowing it to schedule each SCU

to be processed by the next stage. The coordinator also tracks

how long an SCU has existed within the system, allowing it

to determine which SCUs must be queried to achieve a de-

sired level of freshness. Finally, the coordinator is respon-

sible for tracking the liveness of nodes in the system and

initiating recovery in the case of a failure, as described in

Section 3.6.

3.4 Scheduling

LazyBase’s centralized coordinator is responsible for schedul-

ing all work in the system. Nodes, also called workers, are

part of a pool, and the coordinator dynamically schedules

tasks on the next available worker. In this manner, a worker

may perform tasks for whatever stage is required by the

workload. For example, if there is a sudden burst of updates,

workers can perform ingest tasks, followed by sorting tasks,

followed by merging tasks, based on the SCU’s position in

the pipeline. Currently workers are assigned tasks without

regard for preserving data locality; such optimizations are

the subject of future work.

3.5 Scaling

Each of the pipeline stages exhibit different scaling proper-

ties, as described above. Ingest, sort, and the update-rewrite

sub-phase of id-remapping maintain no global state, and can

each be parallelized across any number of individual SCUs.1

Merge is log-n parallelizable, where n is the fan-out of the

merge tree. With many SCUs available, the separate merges

can be parallelized; however, as merges work their way to-

ward the authority, eventually only a single merge to the au-

thority can occur. Sort and merge can also be parallelized

across the different table types, with different tables being

sorted and merged in parallel on separate nodes. Finally, all

of the stages could be parallelized through key-space par-

titioning, in which the primary keys for tables are hashed

across a set of nodes with each node handling the updates

for that set of keys. This mechanism is commonly employed

by many “cloud” systems [1].

Automatically tuning the system parameters and run-time

configuration to the available hardware and existing work-

load is an area of ongoing research. Currently, LazyBase im-

plements the SCU-based parallelism inherent in ingest, sort,

update-rewrite, and merge.

3.6 Fault tolerance

Rather than explicitly replicating data at each stage, Lazy-

Base uses its pipelined design to survive node failures: if a

processing node fails, it recreates the data on that node by re-

processing the data from an earlier stage in the pipeline. For

example, if a merge node fails, losing data for a processed

SCU, the coordinator can re-schedule the SCU to be pro-

cessed through the pipeline again from any earlier stage that

still contains the SCU. The obvious exception is the ingest

stage, where data must be replicated to ensure availability.

Similarly, if a node storing a particular SCU representa-

tion fails, queries must deal with the fact that the data they

desire is unavailable, by either looking at an earlier represen-

tation (albeit at slower performance) or waiting for the de-

sired representation to be recomputed (perhaps on another,

1 Because the mapping from temporary ID to global ID is unique to the

SCU being converted, any number of update-rewrites can be performed in

parallel on separate SCUs.

available node). Once SCUs have reached the authority, it

may be replicated both for availability and query load bal-

ancing. LazyBase can then garbage collect older representa-

tions from the previous stages.

LazyBase detects worker and coordinator failures using a

standard heartbeat mechanism. If the coordinator fails, it is

restarted and then requests the current state of the pipeline

by retrieving SCU information from all live workers. If a

worker fails, it is restarted and then performs a local integrity

check followed by reintegration with the coordinator. The

coordinator can determine what SCU data on the worker is

still relevant based on pipeline progress at reintegration time.

If a worker is unavailable for an extended period of time, the

coordinator may choose to re-process SCU data held on that

worker from an earlier stage to keep the pipeline busy.

3.7 Queries

Queries can operate on the SCUs produced by any of Lazy-

Base’s stages. In the common case, queries that have best-

effort freshness requirements will request results only from

the authority SCU. To improve freshness, queries can con-

tact the coordinator, requesting the set of SCUs that must

be queried to achieve a given freshness. They then retrieve

each SCU depending on the stage at which it has been pro-

cessed and join the results from each SCU based on the re-

sult timestamps to form the final query results. For sorted or

merged SCUs, the query uses the index of the appropriate

table to do the appropriate lookup. For unsorted SCUs, the

query does a scan of the table data to find all of the associated

rows. If joins against ID-key columns are required, the un-

sorted data’s internal temporary ID-key mappings must also

be consulted.

Queries follow a five-phase dataflow: filter, uniquify,

group by, aggregate and post filter. Filtering is performed

in parallel on the nodes that contain the SCU data being

queried, to eliminate rows that do not match the query. For

example, a query that requires data from two merged SCUs

and a sorted SCU will run the queries against those SCUs in

parallel (in this case three-way parallelization). The results

are collected and joined by the caller in the uniquify phase.

The goal of this phase is to eliminate the duplicates that may

exist because multiple SCUs can contain updates to a single

row. This phase effectively applies the updates to the row.

The group by and aggregate phases gather data that belongs

in matching groups, and compute aggregate functions, such

as sum, count, and max, over the data. To access row data

directly, we also include a trivial first aggregate that simply

returns the first value it sees from each group. Finally, the

post filter phase allows the query to filter rows by the results

of the aggregates.

3.8 Data storage

Our implementation makes heavy use of DataSeries [12],

an open-source compressed table-based storage layer de-

signed for streaming throughput. DataSeries stores sets of

rows into extents, which can be dynamically sized and are in-

dividually compressed. Extents are the basic unit of access,

caching, and indexing within LazyBase. LazyBase currently

uses a 64KB extent size for all files. DataSeries files are self-

describing, in that they contain one or more XML-specified

extent types that describe the schema of the extents. Differ-

ent extent types are used to implement different table views.

DataSeries provides an internal index in each file that can

return extents of a particular type.

LazyBase stores an SCU in DataSeries files differently

for each stage. In the ingest stage an SCU is stored in a

single DataSeries file with each table’s primary view schema

being used to hold the unsorted data for each table. In the

id-remapping stage, the ID-key mappings are written out as

sorted DataSeries files, two for each ID-key mapping (one

in id order, the other in key order). In the sort and merge

stages, the SCU is stored as a separate sorted DataSeries file

for each view in each table.

LazyBase also uses external extent-based indexes for all

of its sorted files. These index files store the minimum and

maximum values of the view’s sort key for each extent in a

file. Unlike a traditional B+tree index, this extent-based in-

dex is very small (two keys and an offset for each extent),

and with 64KB extents can index a 4 TB table with a 64-bit

key in as little as 250 MB, which can easily fit into the main

memory of modern machine. Although the range-based na-

ture of the index may result in false positives, reducing any

lookup to a single disk access still dramatically improves

query performance for very large tables.

In addition to its focus on improved disk performance,

DataSeries uses type-specific code to improve its perfor-

mance over many other table-based storage layers. LazyBase

automatically generates code for ingestion, sorting, merging,

and basic querying of indexes from XML-based schema def-

initions.

4. Evaluation

The goal of LazyBase is to provide a high-throughput, scal-

able update system that can trade between query fresh-

ness and query latency while providing an understandable

consistency model. We evaluate LazyBase’s pipeline and

query performance against Cassandra [1], a popular scalable

NoSQL database that is considered to be “write-optimized”

in its design [20]. In addition, we demonstrate the effect

of LazyBase’s batching on update performance, and Lazy-

Base’s unique freshness-queries, demonstrating the user-

tunable trade-off between latency and freshness. Finally, we

compare the consistency models of LazyBase and Cassan-

dra.

4.1 Experimental setup

All nodes in our experiments were Linux Kernel-based Vir-

tual Machines (KVM’s) with 6 CPU cores, 12 GB of RAM,

and 300 GB of local disk allocated through the Linux logical

volume manager (LVM), running Linux 2.6.32 as the guest

OS. Each KVM was run on a separate physical host, with 2-

way SMP quad-core 2.66 GHz Intel Xeon E5430 processors,

16GB of RAM and an internal 7200 RPM 1 TB Seagate SA-

TAII Enterprise disk drive. A second internal 400 GB disk

stored the OS, 64-bit Debian “squeeze.” Nodes were con-

nected via switched Gigabit Ethernet using a Force10 S50

switch. These physical nodes were part of the OpenCirrus

cloud computing research testbed [17].

Unless otherwise stated, experiments were run using 10

database nodes and 20 upload nodes. In LazyBase, the 10

database nodes were split between a single node running the

id-assignment sub-stage and the coordinator and the other

nine worker nodes running an ingest stage as well as a

second dynamically assigned stage (e.g., id-update-rewrite,

sort or merge). Cassandra was configured with nine nodes,

equivalent to the nine workers in LazyBase. We use a default

unsorted SCU size of 1.95M rows and in the merge stage we

merge at most eight SCUs together at a time.

Our experimental data set is a set of 38.4 million tweets

collected from Twitter’s streaming API between January

and February 2010 as part of a study on spam detection in

Twitter [25]. Each observation contains the tweet’s ID, text,

source, and creation time, as well as information about the

user (e.g., id, name, description, location, follower count,

and friends count). The table’s primary view is sorted on

tweet id. The total data set is 50GB uncompressed, the aver-

age row size (a single tweet) is slightly over 1KB. While the

Twitter data is a realistic example of an application that re-

quires high-throughput update, it uses a simple schema with

only one sort order and no ID-keys. In addition to the Twitter

data we used an artificial data generator that can create arbi-

trarily large data sets that exercise the indexing and sorting

mechanisms of LazyBase. Section 4.5 describes this data set

in more detail.

4.2 Update

LazyBase strives for a high-performance pipeline in two

respects: efficiency and scalability. This section evaluates

LazyBase’s choices for batching to achieve high efficiency

and explores LazyBase’s scalability and how it compares

with the scalability of Cassandra.

4.2.1 Efficiency

LazyBase batches together updates into sizable SCUs to

achieve high-throughput ingest with stronger semantics than

eventually consistent systems. Figure 2 illustrates the sensi-

tivity of LazyBase’s update throughput to SCU size. As ex-

pected, as the SCUs get larger, update throughput increases.

However, the per-pipeline stage latency also increases, lead-

ing to a greater freshness spectrum for LazyBase queries.

To maximize throughput, we choose a default SCU size of

1.95M rows for use in subsequent experiments.

Table 2 lists the average latency and throughput of each

pipeline stage for our workload. Because the merge stage

0 500 1000 1500 2000
SCU size (1K rows)

10

20

30

40

50

60

70

80

90

100

T
h
ro

u
g
h
p
u
t

(1
K

 r
o
w

s
/s

)

Figure 2. Inserts per second for different SCU sizes

Stage Latency (s) Rows/s

Ingest 49.7 39,000

ID Remap 5.5 327,000

Sort 12.0 158,000

Merge 31.0+ 120,000

Table 2. Performance of individual pipeline stages. Note

that this workload does not contain ID-keys, making the ID

Remap phase very fast.

0 5 10 15 20
Number of workers

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(1
K

 r
o
w

s/
s)

LazyBase

Cassandra

Figure 3. Inserts processed per second. Error bars represent

the min and max of three runs, while the line plots the mean.

latency is highly dependent upon the total size of the SCUs

being merged, the reported latency is for the smallest 8-

SCU merge. We observe that stages run at varying speeds,

indicating that the ability to parallelize individual stages is

important to prevent bottlenecks and improve overall system

throughput.

4.2.2 Update scalability

To demonstrate LazyBase’s update scalability, we compared

equally sized LazyBase and Cassandra clusters. Figure 3 il-

lustrates this comparison from four worker nodes up through

20 worker nodes. In the LazyBase configuration, one ad-

ditional node ran the id-assignment and coordinator stages

and the remaining nodes ran one ingest worker and one dy-

namically assigned worker (e.g., id-update-rewrite, sort or

merge). In the Cassandra configuration, each node ran one

Cassandra process using a write-one policy (no replication).

For each cluster size, we measured the time to ingest the en-

tire Twitter data set into each system.

We observe that both systems scale with the number of

workers, but LazyBase outperforms Cassandra by a factor

of 4X to 5X, due to the architectural differences between the

systems. Updates in Cassandra are hashed by key to sepa-

rate nodes. Each Cassandra node utilizes a combination of a

commit log for durability and an indexed in-memory struc-

ture in which it keeps updates until memory pressure flushes

them to disk. Cassandra also performs background com-

paction of on-disk data similar to LazyBase’s merge stage.

Unlike LazyBase, Cassandra shows little improvement with

increased batch sizes, and very large batches cause errors

during the upload process. Conversely, LazyBase dedicates

all of the resources of a node to processing a large batch

of updates. In turn, this reduction in contention allows Lazy-

Base to take better advantage of system resources, improving

its performance. LazyBase’s use of compression improves

disk throughput, while its use of schemas improves individ-

ual stage processing performance, giving it additional per-

formance advantages over Cassandra.

4.3 Query

We evaluate LazyBase’s query performance on two metrics.

First, we compare it to Cassandra for both point and range

queries, showing query throughput for increasing numbers

of query clients. Second, we demonstrate LazyBase’s unique

ability to provide user-specified query freshness, showing

the effects of query freshness on query latency.

To provide an equitable query comparison to Cassan-

dra, we added a distribution step at the end of LazyBase’s

pipeline to stripe authority data across all of the worker

nodes in batches of 64K rows. Because this distribution is

not required for low-latency authority queries, we did not

include its overhead in the ingestion results; for our work-

load the worst-case measured cost of this distribution for the

final authority is 314 seconds (a rate of 120K rows/s). We

further discuss how such striping could be tightly integrated

into LazyBase’s design in Section 5.

To support range queries in Cassandra, we added a set

of index rows that store contiguous ranges of keys. Similar

to the striped authority file in LazyBase, each index row is

keyed by the high-order 48 bits of the 64 bit primary table

key (i.e., each index row represents a 64K range of keys).

We add a column to the index row for every key that is

stored in that range, allowing Cassandra to quickly find the

keys of all rows within a range using a small number of

point queries. In our tests, the range queries only retrieve the

0 10 20 30 40 50 60 70
Query clients

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (1
K

qu
er

ie
s/

s)

LazyBase
Cassandra

Figure 4. Random single row queries for LazyBase and

Cassandra. Measured as queries per second with increasing

numbers of query clients running 1000 queries per client.

existing keys in the range, and no data columns, allowing

Cassandra to answer the query by reading only the index

rows. Having Cassandra also perform the point lookups to

retrieve the data columns made individual 0.1% selectivity

queries in Cassandra take over 30 minutes.

We also ran all experiments on a workload that would fit

into the memory of the Cassandra nodes, since Cassandra’s

performance out-of-core was more than 10 times slower than

LazyBase. We believe this to be due to Cassandra’s back-

ground compaction approach, in which all uncompacted ta-

bles must be examined in reverse-time order when querying

until the key is found. To mitigate this effect, we issued each

query twice: once to warm up the cache, and a second time

to measure the performance.

Figure 4 illustrates single-row query performance of both

LazyBase and Cassandra. We exercise the query through-

put of the two systems using increasing numbers of query

clients, each issuing 1000 random point queries. We see that

Cassandra’s throughput is approximately twice that of Lazy-

Base, due primarily to the underlying design of the two sys-

tems. Cassandra distributes rows across nodes using consis-

tent hashing and maintains an in-memory hash table to pro-

vide extremely fast individual row lookups. LazyBase keeps

a small in-memory index of extents, but must decompress

and scan a full extent in order to retrieve an individual row.

The result is that LazyBase has a high query latency, which

results in slower absolute throughput for the fixed workload.

Figure 5 illustrates range query performance of both

LazyBase and Cassandra. These queries simply return the

set of valid tweet IDs within the range, allowing Cassandra

to service the query from the index rows without using a

set query to access the data belonging to those tweets. We

exercise the query throughput of the two systems using in-

creasing numbers of query clients, each issuing 10 random

queries retrieving a range over 0.1% of the key-space. With a

low number of query clients, LazyBase and Cassandra have

0 10 20 30 40 50 60 70
Query clients

0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (q

ue
rie

s/
s)

LazyBase
Cassandra

Figure 5. Random range queries for LazyBase and Cassan-

dra with 0.1% selectivity. Measured as queries per second

with increasing numbers of query clients running 10 queries

per client.

0 200 400 600 800 1000 1200 1400
Elapsed time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Q

ue
ry

 la
te

nc
y

(s
)

Freshest
5s out of date
10s out of date
15s out of date

Figure 6. Query latency over time for steady-state work-

load. Sampled every 15s, and smoothed with a sliding win-

dow average over the past minute.

similar performance; however, LazyBase continues to scale

up to 24 clients, while Cassandra tops out at four. Lazy-

Base’s sorted on-disk data format allows it to serve range

queries as streaming disk I/O, while Cassandra must read

many tables to retrieve a range.

Figure 6 illustrates the query latency when run with con-

current updates in LazyBase for four different point query

freshnesses, 15 seconds, 10 seconds, 5 seconds, and 0 sec-

onds. In this experiment, we ran an ingest workload of 59K

inserts per second for a period of 650 seconds. Pipeline pro-

cessing continued until 1133 seconds at which point the

merged SCUs were fully up-to-date.

Figure 7 illustrates a 200-second window of this ingest

workload, measuring the effective staleness of the sorted

SCUs in the system. When a sort process completes, the

staleness drops to zero, however, as the next sort process

100 150 200 250 300
Elapsed time (s)

0

2

4

6

8

10

12

14

16
St

al
en

es
s

of
 s

or
te

d
da

ta
 (s

) Actual
Smoothed

Figure 7. The staleness of the sorted data over a 200-second

window of the steady-state workload. That is, at any point in

time, the freshness limit that would have to be set to avoid

expensive queries to unsorted data. The smoothed line is

over a 60-second sliding window.

continues, the staleness continues to increase until the next

SCU is available at that stage. The result is that although

the average staleness is around 6 seconds, the instantaneous

staleness varies between 0 and 14 seconds.

Taken together, Figures 6 and 7 effectively demonstrate

the cost of query freshness in a live system. In the case of the

15-second query, we see that query latency remained stable

throughout the run. Because newly ingested data was always

processed through the sort stage before the 15 second dead-

line, the 15-second query always ran against sorted SCUs,

with its latency increasing only slightly as the index size for

these files increased. In the case of a 0-second query, the

query results occasionally fall into the window where sorted

SCUs are completely fresh, but usually included unsorted

SCUs that required linear scans, increasing query latency.

Because the results in Figure 6 are smoothed over a 60-

second window, points where only sorted data was examined

show up as dips rather than dropping to the lowest latency.

The 10-second query was able to satisfy its freshness con-

straint using only sorted SCUs much more frequently, caus-

ing its instantaneous query latency to occasionally dip to that

of the 15-second query. As a result, its average query latency

falls between the freshest and least fresh queries. At 650 sec-

onds ingest stops and shortly thereafter all SCUs have been

sorted. This results in all query freshnesses achieving the

same latency past 662 seconds.

4.4 Consistency

To compare the consistency properties of LazyBase and

Cassandra, we performed an experiment involving a single-

integer-column table with two rows. Our LazyBase client

connected to the database, issued two row updates incre-

menting the value of the first row and decrementing the value

of the second row, and then issued a commit. Our Cassandra

0 50 100 150 200 250 300
Time (s)

3

2

1

0

1

2

3

S
u
m

 o
f

v
a
lu

e
s

LazyBase

Cassandra

Figure 8. The sum of the values of two rows updated within

a single client session. Non-zero values indicate an inconsis-

tency in the view of the two rows.

client performed the same updates as part of a “batch up-

date” call and used the quorum consistency model, in which

updates are sent to a majority of nodes before returning from

an update call. Conceptually, from a programmer’s perspec-

tive, this would be equivalent to doing a transactional update

of two rows, to try to ensure that the sum of the two rows’

values is zero. We also maintained a background workload

to keep the databases moderately busy, as they might be in

a production system. During the experiment we ran a query

client that continuously queried the two rows of the table

and recorded their values. In the case of Cassandra, our

query client again used the quorum consistency model, in

which queries do not return until they receive results from a

majority of the nodes.

Figure 8 graphs the sum of the values of the two rows over

the lifetime of the experiment. In the case of LazyBase, we

see that the sum is always zero, illustrating its consistency

model: all updates within a single SCU are applied together

atomically. In the case of Cassandra, we see that the sum

of the values varies between -1, 0, and 1, illustrating that

Cassandra does not provide self-consistency to its users.

Figure 9 further illustrates the difficulty placed on users of

systems like Cassandra, showing the effective timestamps of

the retrieved rows for each query over a 100-second period

of the experiment.2 In the case of LazyBase, we see that

its batch consistency model results in a step function, in

which new values are seen once a batch of updates has been

processed. Under this model, the two rows always remain

consistent. In the case of Cassandra, not only do the two

rows differ in timestamp, but often the returned result of

a given value is older than the previously returned result,

illustrated by a dip in the effective time for that row. This

2 Note that we show both rows for Cassandra, but only a single row for

LazyBase, as LazyBase’s consistency model ensures that both rows always

have the same timestamp.

100 120 140 160 180 200 220
Time (s)

40

60

80

100

120

140

160

180

200

P
e
rc

ie
v
e
d
 t

im
e
 o

f
v
a
lu

e
 (

s)

LazyBase

Cassandra A

Cassandra B

Figure 9. The effective timestamp of the returned rows at

query time. Differences between Cassandra row A and Cas-

sandra row B indicate inconsistencies between the rows at

query time. Dips in the timestamps of a single row indicate

violations in monotonic read consistency.

violation of monotonic read consistency adds a second layer

of complexity for users of the system.

We also see that LazyBase generally provides less fresh

results than Cassandra, as is expected in a batch processing

system. However, because LazyBase is able to process up-

dates more effectively, it less frequently goes into overload.

Thus, in some cases of higher load, it is actually able to pro-

vide fresher results than Cassandra, as demonstrated in the

period from 180 to 185 seconds in the experiment.

4.5 Complex schema

Although the Twitter data set used in the previous exam-

ples represents an interesting real-world application, it has a

fairly simple schema and indexing structure. We also eval-

uate the performance of LazyBase with a more complex

artificial data set. This data set consists of three tables,

TestID, TestOne and TestTwo. TestID contains a 64-

bit integer ID-key, which is used in the primary key for

TestOne and TestTwo. For each ID-key, TestOne con-

tains a string, stringData, and a 32-bit integer intData.

TestTwo contains a one-to-many mapping from each ID-

key to attribute-value pairs, both 32-bit integers. In addition

to the primary view, each table also has a secondary view,

sorted on a secondary key. TestOne’s secondary view is

sorted by the stringData field, while TestTwo’s is sorted

by the value field.

When uploading this data set to Cassandra, both pri-

mary and secondary views are stored using the technique

described above for range queries: a separate “index table”

stores one row for each value (e.g., the sort key for the view)

and a column for every primary key that has that value. For

example, the secondary index table for TestTwo contains

one row for each value and a column for every primary key

that has that value in an attribute.

0 500 1000 1500 2000 2500
Time (s)

0

10

20

30

40

50

60

70

80

M
ill

io
n
s

o
f

ro
w

s

Cassandra

LazyBase Ingest

LazyBase Sort

LazyBase Merge

Figure 10. Ingest performance for the complex schema

workload. The x-axis represents the elapsed time, and the

y-axis represents the number of rows that are available in

the database. For LazyBase each line represents the number

of rows available at a particular stage of the pipeline.

Stage Latency (s) Rows/s

Ingest 311 27,000

ID Remap 61 138,000

Sort 206 41,000

Merge 115 73,000

Table 3. Performance of individual pipeline stages on the

complex workload.

Figure 10 shows the performance of ingesting the com-

plex data set to a cluster of nine servers for both LazyBase

and Cassandra. For LazyBase the graph shows the number of

rows available at each stage of the pipeline. The batch size

for Cassandra was set to 1K rows, while the batch size for

LazyBase was set to 8M rows. Cassandra’s batch size is lim-

ited because batching must be done by the client, and each

batch must be transmitted in a single RPC. Even within the

hard limits imposed by Cassandra, larger batch sizes produce

performance problems: we found that Cassandra’s write per-

formance for batches of 10K rows was worse than with

smaller batches. LazyBase, which is designed with batching

in mind, performs batching on the ingest server and stores

batches on disk, allowing them to be arbitrarily large. Be-

cause of the large batch sizes, the number of rows available

at any stage of LazyBase is a step function. The same is true

for Cassandra, but because the batch sizes are much smaller,

the steps are not visible in the graph.

We also computed the average per-stage latency, similar

to Table 2. These results are shown in Table 3. Compared

to Table 2, all stages of the pipeline are slowed down in

this test, due to two factors: the complexity of the schema

and the lack of parallelism in ingest. Compared to the first

schema, which required no remapping and produced only a

single sort order, this schema must remap the two tables’

primary keys, and produce and merge two sort orders for

each table. Furthermore, the previous experiment was able

to take advantage of parallelism during the ingest stage:

multiple data streams were uploaded simultaneously and

merged into a single SCU, increasing the throughput of the

ingest stage. In this experiment a single client is performing

all uploads, so there is no ingest stage parallelism.

4.6 Summary

The results of our evaluation of LazyBase illustrate its many

benefits. By trading off query freshness for batching, Lazy-

Base’s pipelined architecture can process updates at rates 4X

to 5X faster than the popular Cassandra NoSQL database.

Although Cassandra’s in-memory hash-table has twice the

point query throughput as LazyBase, LazyBase’s sorted on-

disk format gives 4X the range query throughput. When per-

forming out-of-core queries, LazyBase exceeds Cassandra’s

query latency by more than 10 times. We also illustrate how

users of LazyBase, unlike other systems, can dynamically

choose to trade query latency for query freshness at query

time.

LazyBase exhibits these properties while also providing a

clear consistency model that we believe fits a broader range

of applications. Our evaluation of Cassandra’s consistency

illustrated violations of both self-consistency, where we ob-

served inconsistencies in multi-row queries, and monotonic

read consistency, where we observed clients seeing an older

version of a row up to 5 seconds after seeing the newest ver-

sion of that row. These types of inconsistencies are not pos-

sible in LazyBase by design, and our experimental results

showed that they do no occur in practice.

5. Discussion

We have developed LazyBase to perform well under a par-

ticular set of use cases. In this section, we describe modifi-

cations to LazyBase’s design that could broaden its applica-

bility or make it more suitable to a different set of use cases.

Data distribution: LazyBase’s pipelined design offers

several trade-offs in how data is distributed amongst nodes

for the purposes of query scalability. Our experiments were

run using an authority file striping approach; however, it may

be advantageous to perform this striping during the sort stage

of the pipeline to provide the same kind of query scalability

to freshness queries. This approach would require a more

robust striping strategy, perhaps using consistent hashing of

key ranges to ensure even distribution of work. Furthermore,

the choice of stripe size has an effect on both range query

performance and workload distribution.

Alternate freshness models: LazyBase’s freshness

model currently describes requirements by putting a bound

on how out-of-date results are (e.g., “all results as of an hour

ago”). Other freshness models may also be desirable, such

as only the most recent updates (e.g., “all results that were

received in the last hour”) or a past point in time (e.g., “all

results as of three weeks ago”). Given LazyBase’s pipelined

design, one could easily add analysis stages after ingest to

provide stream query analysis of incoming updates. Because

LazyBase doesn’t overwrite data in-place, by not delet-

ing data, LazyBase could generate consistent point-in-time

snapshots of the system that could be tracked by the coordi-

nator to provide historical queries.

Scheduling for different freshnesses: LazyBase’s sched-

uler provides the same priority for processing of all ta-

bles in the system. However, some applications may de-

sire that queries to particular tables (e.g., a table of security

settings) are always fresher. To better support those appli-

cations, LazyBase could adjust its scheduling to prioritize

work based on desired freshness for those tables.

Integration with other big-data analysis: In some

cases, it may be desirable to integrate the resulting data

tables of LazyBase with other big-data analysis techniques

such as those offered by the Hadoop project. LazyBase could

easily integrate with such frameworks, potentially even treat-

ing the analysis as an additional pipeline stage and schedul-

ing it with the coordinator on the same nodes used to run the

rest of LazyBase.

6. Related work

The traditional approach to decision support loads data gen-

erated by operational OLTP databases, via an ETL process,

into a system optimized for efficient data analytics and read-

only queries. Recent “big data” systems such as Hadoop [26]

and Dremel [31] allow large-scale analysis of data across

hundreds of machines, but also tend to work on read-only

data sets.

Several research efforts (e.g. [33, 36]) have examined ef-

ficient means to support both data models from the same

database and storage engine using specialized in-memory

layouts. RiTE [41] caches updates in-memory, and batches

updates to the underlying data store to achieve batch update

speeds with insert-like freshness. Similarly, Vertica’s hybrid

storage model caches updates in a write-optimized memory

format and uses a background process to transform updates

into the read-optimized on-disk format [7]. Both of these

techniques provide up-to-date freshness, but require suffi-

cient memory to cache the update stream. LazyBase sepa-

rates the capture of the update stream from the transform

step, reducing freshness but improving resource utilization

and responsiveness to burst traffic.

FAS [34] maintains a set of databases at different fresh-

ness levels, achieving a similar effect to LazyBase, but

requiring significant data replication, reducing their scal-

ability and increasing cost. Other groups have examined

techniques for incrementally updating materialized views,

but rely on the standard mechanisms to ingest data to the

base table, leaving the problem described here mostly un-

solved [11, 35]. Further, researchers have examined data

structures to provide a spectrum between update and query

performance [23, 24]. These structures provide a flexible

tradeoff similar to that of LazyBase, and we believe that

LazyBase could benefit by employing some of these tech-

niques in the future.

LazyBase’s use of update tables is similar to ideas used

in other communities. Update files are commonly used for

search applications in information retrieval [16, 30]. Con-

sulting differential files to provide up-to-date query re-

sults is a long-standing database technique, but has been

restricted to large databases with read-mostly access pat-

terns [37]. More recent work for write-optimized databases

limits queries to the base table, which is lazily updated [29].

Google’s BigTable [18] provides a large-scale distributed

database that uses similar update and merge techniques, but

its focus on OLTP-style updates requires large write-caches

and cannot take advantage of the trade-off between freshness

and performance inherent in LazyBase’s design.

BigTable is also one of a class of systems, including

Dynamo [27], SimpleDB [8], SCADS [13], Cassandra [1],

Greenplum [9] and HBase [2] in which application devel-

opers have built their own data stores with a focus on high

availability in the face of component failures in highly dis-

tributed systems. These systems provide performance scala-

bility with a relaxed, eventual consistency model, but do not

allow the application to specify desired query freshness. Un-

like LazyBase, the possibility of inconsistent query results

limits application scope, and can make application develop-

ment more challenging.

SCADS [13] describes a scalable, adjustable-consistency

key-value store for interactive Web 2.0 application queries.

SCADS also trades off performance and freshness, but does

so in a greedy manner, relaxing goals as much as possible to

save resources for additional queries.

Incremental data processing systems, such as Percola-

tor [32], incrementally update an index or query result as

new values are ingested. These systems focus on continu-

ous queries whose results are updated over time, rather than

sequences of queries to the overall corpus. They do not ad-

dress the same application needs (e.g., freshness vs. query

speed) as LazyBase, but their techniques could be used in a

LazyBase-like system to maintain internal indices.

Sumbaly et al. [39] extend the Voldemort key-value store

to provide efficient bulk loading of large, immutable data

sets. Like LazyBase, the system uses a pipelined approach

to compute the next authority version of the data set, in this

case using Hadoop to compute indices offline. Unlike Lazy-

Base, it does not permit queries to access the intermediate

data for fresher results.

Some distributed “continuous query” systems, such as

Flux [38] and River [14], used a similar event-based paral-

lel processing model to achieve scalability when scheduling

a set of independent operations (e.g., analysis of time series

data) across a set of nodes. However, they have no concept of

coordinating a set of operations, as is required for providing

self-consistency. Additionally, they are not designed to pro-

vide access to the results of intermediate steps, as required

for the freshness/performance trade-off in LazyBase.

7. Conclusions

We propose a new data storage system, LazyBase, that lets

applications specify their result freshness requirements, al-

lowing a dynamic tradeoff between freshness and query per-

formance. LazyBase optimizes updates through bulk pro-

cessing and background execution of SCUs, which allows

consistent query access to data at each stage of the pipeline.

Our experiments demonstrate that LazyBase’s pipelined

architecture and batched updates provide update through-

put that is 4X to 5X higher than Cassandra’s at all scal-

ability levels. Although Cassandra’s point queries outper-

form LazyBase’s, LazyBase’s range query throughput is

4X higher than Cassandra’s. We also show that LazyBase’s

pipelined design provides a range of options on the read-

query freshness-latency spectrum and that LazyBase’s con-

sistency model provides clear benefits over other “eventu-

ally” consistent models such as Cassandra’s.

8. Acknowledgments

We wish to thank our shepherd, Guillaume Pierre; the anony-

mous reviewers; and Ilari Shafer for their suggestions for im-

provements to the paper. We thank Eric Anderson for his as-

sistance with DataSeries. We thank the members and compa-

nies of the PDL Consortium (including APC, EMC, Emulex,

Facebook, Google, Hewlett-Packard, Hitachi, IBM, Intel,

LSI, Microsoft, NEC, NetApp, Oracle, Riverbed, Samsung,

Seagate, STEC, Symantec, and VMWare) for their interest,

insights, feedback, and support. This research was sponsored

in part by an HP Labs Innovation Research Program award

and Intel, via the Intel Science and Technology Center for

Cloud Computing (ISTC-CC). This research was enabled by

hardware donations from Intel and NetApp.

References

[1] Apache Cassandra, http://cassandra.apache.org/.

[2] Apache HBase, http://hbase.apache.org/.

[3] CouchDB, http://couchdb.apacheorg/.

[4] MongoDB, http://www.mongodb.org/.

[5] Twitter Earthquake Detector, http://recovery.doi.gov/press/us-

geological-survey-twitter-earthquake-detector-ted/.

[6] Apache Thrift, http://thrift.apache.org/.

[7] HP Vertica, http://www.vertica.com/.

[8] Amazon SimpleDB, http://aws.amazon.com/simpledb/.

[9] EMC Greenplum, http://www.greenplum.com/.

[10] A look at Twitter in Iran .

http://blog.sysomos.com/2009/06/21/a-look-at-twitter-in-

iran/.

[11] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update

streams in a soft real-time database system. In Proc. SIG-

MOD, 1995.

[12] E. Anderson, M. Arlitt, C. B. Morrey III, and A. Veitch.

DataSeries: An efficient, flexible data format for structured se-

rial data. ACM SIGOPS Operating Systems Review, 43(1):70–

75, January 2009.

[13] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. SCADS: Scale-

independent storage for social computing applications. In

Proc. CIDR, January 2009.

[14] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler,

J. M. Hellerstein, D. Patterson, and K. Yelick. Cluster I/O

with River: Making the fast case common. In Proc. Workshop

on Input/Output in Parallel and Distributed Systems (IOPADS

’99), May 1999.

[15] C. Babcock. Data, data, everywhere. Information Week,

January 2006.

[16] S. Buttcher and C. L. A. Clarke. Indexing time vs. query time:

trade-offs in dynamic information retrieval systems. Proc.

14th ACM Intl. Conf. on Information and Knowledge Man-

agement (CIKM), pages 317–318, 2005.

[17] R. Campbell, I. Gupta, M. Heath, S. Ko, M. Kozuch,

M. Kunze, T. Kwan, K. Lai, H. Lee, M. Lyons, D. Miloji-

cic, D. O’Hallaron, and Y. Soh. Open cirrus cloud computing

testbed: Federated data centers for open source systems and

services research. In Proc. of USENIX HotCloud, June 2009.

[18] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

BigTable: A distributed storage system for structured data. In

Proc. OSDI, November 2006.

[19] S. Chaudri, U. Dayal, and V. Ganti. Database technology for

decision support systems. Computer, 34(12):48–55, Decem-

ber 2001.

[20] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB.

In Proc. of Symposium on Cloud Computing (SOCC), June

2010.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In Proc. OSDI, pages 137–150,

2004.

[22] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S.

Smolinski, and L. Brilliant. Detecting influenza epidemics

using search engine query data. Nature, pages 1012–1014,

February 2009.

[23] G. Graefe. Write-optimized B-trees. In Proc. VLDB, pages

672–683, 2004.

[24] G. Graefe. B-tree indexes for high update rates. ACM SIG-

MOD Record, 35(1):39–44, March 2006.

[25] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: The

underground on 140 characters or less. In Proc. of ACM Conf.

on Computer and Communications Security, October 2010.

[26] Hadoop. http:// hadoop.apache.org/.

[27] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Siva-

subramanian, P. Voshall, and W. Vogels. Dynamo: Amazon’s

highly available key-value store. In Proc. SOSP, pages 205–

220, 2007.

[28] D. Henschen. 3 big data challenges: Expert advice. Informa-

tion Week, October 2011.

[29] S. Hildenbrand. Performance tradeoffs in write-optimized

databases. Technical report, Eidgenossiche Technische

Hochschule Zurich (ETHZ), 2008.

[30] N. Lester, J. Zobel, and H. E. Williams. In-place versus re-

build versus re-merge: index maintenance strategies for text

retrieval systems. Proc. 27th Australian Conf. on Computer

Science (ACSC), 2004.

[31] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,

M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of

web-scale datasets. Proc. VLDB, pages 330–339, September

2010.

[32] D. Peng and F. Dabek. Large-scale incremental processing us-

ing distributed transactions and notifications. In Proc. OSDI,

pages 1–15, 2010.

[33] H. Plattner. A common database approach for OLTP and

OLAP using an in-memory column database. In Proc. SIG-

MOD, July 2009.

[34] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS - a

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. VLDB, pages 754–765, 2002.

[35] K. Salem, K. Beyer, and B. Lindsay. How to roll a join: Asyn-

chronous incremental view maintenance. In Proc. SIGMOD,

2000.

[36] J. Schaffner, A. Bog, J. Kruger, and A. Zeier. A hybrid row-

column OLTP database architecture for operational reporting.

In Proc. Intl. Conf. on Business Intelligence for the Real-Time

Enterprise, 2008.

[37] D. G. Severance and G. M. Lohman. Differential files: their

application to the maintenance of large databases. ACM Trans.

on Database Systems, 1(3):256–267, 1976.

[38] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.

Franklin. Flux: An adaptive partitioning operator for continu-

ous query systems. Proc. ICDE, pages 25–36, 2003.

[39] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and

S. Shah. Serving large-scale batch computed data with project

voldemort. In Proc. 10th USENIX Conf. on File and Storage

Technologies (FAST), 2012.

[40] D. Terry. Replicated data consistency explained through base-

ball. Technical Report MSR-TR-2011-137, Microsoft Re-

search, October 2011.

[41] C. Thomsen, T. B. Pedersen, and W. Lehner. RiTE: Providing

on-demand data for right-time data warehousing. In Proc.

ICDE, 2008.

[42] W. Vogels. Eventually consistent. Commun. ACM, 52:40–44,

January 2009.

	Introduction
	Background and motivation
	Design and implementation
	Service model
	Data model
	Pipelined design
	Scheduling
	Scaling
	Fault tolerance
	Queries
	Data storage

	Evaluation
	Experimental setup
	Update
	Efficiency
	Update scalability

	Query
	Consistency
	Complex schema
	Summary

	Discussion
	Related work
	Conclusions
	Acknowledgments

